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CHAPTER 1. INTRODUCTION 

Ultrasound, the application of acoustic waves with frequencies from about 20 

KHz to several hundred MHz for the study of matter, is widely used in the fields 

of engineering, agriculture, and medicine. Engineering applications of ultrasound 

include the non-destructive testing of fabricated structures. Agricultural applications 

include determination of backfat thickness in beef cattle and swine, pregnancy testing 

of hogs, and determination of quality of food like the percentage of solid fat in oil, 

and the ripeness of fruit. In medicine, ultrasound is being used extensively for non- 

invasively studying soft tissue structures and organs such as the heart, the kidneys, 

and the liver. The popularity of ultrasound is due to its low cost of operation, ease 

of use and inherent safety. 

All of the above applications make use of the property of ultrasound to be re¬ 

flected at interfaces between regions of different acoustic properties. The reflected 

ultrasonic waves, which contain information about the type, size, and structure of 

the region being studied, can be displayed one-dimensionally (A-mode) or further 

processed to form an image (B-mode). Frequency shifts in the reflected waves can 

be used to study objects in motion (Doppler Ultrasound). Good amount of informa¬ 

tion is obtained by visual inspection and interpretation of the above displays. More 

recently, advanced signal processing and pattern recognition techniques have been 
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applied to ultrasonic data to extract parameters that can quantitatively, and hence 

more accurately, describe and differentiate the regions being studied. 

In the United States, commercially available beef is now being graded subjec¬ 

tively by certified United States Department of Agriculture (USDA) inspectors. This 

is done by visually determining the amount and distribution (marbling) of intramus¬ 

cular fat in the rib-eye muscle. Since grading is the primary basis for establishing 

the economic value of beef carcasses, there is a growing demand in the meat industry 

for a more objective system of evaluating beef carcasses. Also, an ability to estimate 

marbling in live animals would facilitate clustering procedures for targeting carcasses 

to more exact packers. In various studies, ultrasound (both A-mode and B-mode) 

has been shown to have a very good potential for the above tasks. 

The objective of this study was to explore the possibility of using texture anal¬ 

ysis on ultrasonic images of the rib-eye as a tool for estimating marbling in live beef 

animals. Two texture analysis methods, namely, the spatial gray level dependence 

matrices and the gray level run length matrices, were used to extract features. Sta¬ 

tistical methods were then used to study the correlation between these texture based 

features and the intramuscular fat content in the rib-eye muscle. 
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CHAPTER 2. LITERATURE REVIEW 

Ultrasonic Tissue Characterization 

Tissue properties such as degree of inhomogeneity, scatterer type, size, density, 

and distribution affect the nature of the reflected ultrasonic signal. Ultrasonic tissue 

characterization is an objective method which involves the quantitative interpretation 

of information present in ultrasonic signals for diagnosis and monitoring of tissue. In 

contrast to tissue characterization, subjective methods qualitatively interpret A- and 

B-mode features such as rate of change of signal amplitude, image texture, “shadow¬ 

ing” due to attenuating tissue regions, highlighting due to nonattenuating regions, 

boundary regularity, and echogenicity (Feleppa and Yaremko, 1987). Although such 

methods are extremely useful, they often are operator and instrument dependent, 

and do not fully use the information present in the received ultrasonic signals. 

Schemes of A-mode signals for tissue characterization include estimation of at¬ 

tenuation, diffraction techniques, and spectrum analysis. Various studies have found 

attenuation to be a useful tissue-characterization parameter (Amin, 1989; Widyaat- 

madja, 1991). Also, frequency dependence of attenuation has been used to charac¬ 

terize liver (Narayana and Ophir, 1983), breast tissue (Edmonds et al., 1991), and 

beef muscle tissue (Chang, 1991). Spectral analysis of the backscattered signal has 

been used for disease diagnosis and treatment monitoring in ophthalmology, and for 
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studying diffuse liver diseases (Feleppa and Yaremko, 1987). 

Texture analysis has also been used for analyzing B-mode images for tissue char¬ 

acterization. Structures in soft tissue, the dimensions of which are small in compar¬ 

ison with the wavelength of the incident pulse, cause ultrasonic waves to scatter 

(Rayleigh Scattering). Constructive and destructive interference from phase differ¬ 

ences in wave fronts from various scatterers produces a random graininess in ultra¬ 

sound images that is termed “speckle.” Speckle patterns are affected by scatterer size 

and density, and the interrogation frequency (Feleppa and Yaremko, 1987). Analysis 

of speckle texture has been used successfully for differentiating diffuse liver diseases 

(such as alcoholic liver disease, cirrhosis, and hepatitis) caused by disruption of nor¬ 

mal tissue architecture (Lerski et al., 1981; Nicholas et al., 1986; Layer et al., 1990; 

Wu et al., 1992). 

Beef Quality Grading 

Commercially available beef is assigned a quality grade by trained graders of the 

USDA Agricultural Marketing Service—Livestock Division. Quality grades indicate 

the palatibility of beef in terms of tenderness, flavor, and juiciness. Quality grade 

is determined mainly by two factors—maturity and marbling. Maturity groups, 

classified from A to E, under the USDA grading system are determined by subjectively 

observing the bone structure and color of lean. Age ranges of these maturity groups 

are as follows: 

A. Approximately 9-30 months 

B. Approximately 30-42 months 

C. Approximately 42-72 months 
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D. Approximately 72-96 months 

E. Over 96 months 

Marbling is the content and distribution of intramuscular fat within the lean area of 

the rib eye between the 12th and 13th ribs (Figure 2.1). 

Figure 2.1: Cross section of rib eye between the 12th and 13th ribs. Small flecks of 
intramuscular fat can be seen in the muscle area. 

Degrees of marbling, as shown in Figure 2.2, are subjectively determined and 

are used to assign quality grade. A marbling score is assigned depending upon the 

amount of marbling (Figure 2.3). The quality grades for A and B maturity carcasses 

are USDA Prime, Choice, Select, and Standard. For C and older maturities, the 

quality grades are Commercial, Utility, and Cutter. The maturity and marbling 

scores are combined according to the information in Figure 2.3 to determine the final 

quality grade of a beef carcass. Since maturity is less subjective in nature, the most 

important factor in quality grading is the marbling. 

A more quantitative estimate of marbling levels in the rib eye, called %fat, can 

be obtained by performing chemical tests. The %fat values, using the ether extraction 

method, for various degrees of marbling were studied by Saveli et al. (1986) and are 
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Slightly Abundant Moderately Abundant Abundant 

Figure 2.2: Illustrations of the degrees of marbling referred to in the I'nited States 
standards for grades of carcass beef 
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Figure 2.3: Relationship between marbling, maturity, and carcass quality grade 

shown in Table 2.1. %Fat values are usually used for correlating with quantitative 

ultrasonic parameters. 

Ultrasound for Beef Grading 

There is a growing demand in the meat industry for an objective quantitative 

method of quality grading of beef carcasses. Also, a method for estimating marbling 

in live animals would help cluster feedlot cattle into outcome groups for more ef¬ 

fective marketing. Various feasibility studies have found ultrasound to have a good 

potential for quanitative characterization of marbling in beef carcasses and live an¬ 

imals. An in-vitro ultrasonic Bragg scattering technique has been used for classify¬ 

ing marbling (Haumschild and Carlson, 1983). Estimation of signal attenuation in 
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Table 2.1: Mean ether extractable %fat of the rib eye classified according to their 
degree of marbling (Saveli et al., 1986) 

Degree of Marbling Ether Extractable %Fat 
Mean SD 

Prime 
Moderately Abundant 10.42 2.16 
Slightly Abundant 8.56 1.60 

Choice 
Moderate 7.34 1.50 
Modest 5.97 1.15 
Small 4.99 1.10 

Select 
Slight 3.43 0.89 

Standard 
Traces 2.48 0.59 
Practically Devoid 1.77 1.12 

the rib eye samples using the log-spectral difference method (Amin, 1989) and the 

slope of the attenuation coefficient (Widyaatmadja, 1991) using A-mode signals have 

been investigated for quantifying marbling. Chang (1991) has reported the use of 

time domain signatures—power and above-noise threshold count, and a frequency 

domain signature—the within bandwidth slope, extracted from A-mode signals for 

in-vitro characterization of marbling. Also, backscattered spectral parameters have 

shown good potential for evaluating marbling grades (Amin, 1992; Amin et al., 1992). 

Brethour (1990) reports the development of a scoring system for in-vivo estimation 

of marbling in live animals based on speckle present in B-mode images of the rib eye 

muscle. 

In this study, texture analysis was used for characterizing marbling in live ani¬ 

mals. It has been shown (Brethour, 1990) that as fat deposits (and hence marbling) 

increase, there is a increase in speckle present in B-mode images (Figure 2.4). Speckle 
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alters the texture of the image. The ability of texture analysis on B-mode images to 

differentiate soft tissues has been illustrated by its successful use in studying diffuse 

diseases of the liver. 

Image Texture Analysis 

Texture is an innate property of virtually all surfaces. It contains important 

information about the structural arrangement of surfaces and their relationship to 

the surrounding environment. Image texture has long been used for segmentation 

and classification. A number of approaches for estimating texture have been devel¬ 

oped. Two methods that were investigated in this study are 1) the spatial gray-level 

dependence matrices method (SGLDM), and 2) the gray-level run length matrices 

method (GLRLM). 

Spatial Gray-Level Dependence Matrices Method 

Haralicket al. (1973) first proposed the SGLDM method and a list of 14 textural 

features which could be computed from it. This method has been used extensively 

for identifying diffuse diseases of the liver (Lerski et al., 1981; Nicholas et al., 1986; 

Layer et al., 1990; and Wu et al., 1992). It is based on the assumption that texture 

information in an image / is contained in the overall or ” average” spatial relationship 

which the the gray levels in the image have to one another. 

Let an image to be analyzed, /, have dimensions Ny x Nx and Ng gray levels. 

Let Lx = {1,2,...., Nx} be the horizontal spatial domain, Ly = {1,2, ....,Ny} be the 

vertical spatial domain, and G = {1,2,...., Ng} be the set of Ng quantized gray levels. 

Four angular nearest-neighbor SGLD matrices corresponding to the four principal 
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Figure 2.4: B-mode images of the rib eye region in live animals showing differences 
in speckle scores. A) boundary between subcutaneous fat and rib eye 
muscle; B) boundary between hide and subcutaneous fat: ( ') blood ves¬ 
sel: D) area, of intense speckle: E) rib bone: F) reverberation from nether 
region: G) grub (Brethour. 1990) 
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90 degrees 

Figure 2.5: Resolution cells 1 and 5 are 0° nearest neighbors to resolution cell *; 
resolution cells 2 and 6 are 135° nearest neighbors; resolution cells 3 
and 7 are 90° nearest neighbors; and resolution cells 4 and 8 are 45° 
nearest neighbors to * (Haralick et al., 1973) 

directions (Figure 2.5) are constructed—P{i,j, d, 0°), P(i, j, d, 45°), d, 90°), 

P(i,j, d, 135°). A matrix element (i,j) specifies the number of times two neighboring 

pixels separated by a distance d, one with gray level i and the other with gray level j, 

occur on the image in a given direction. The algorithm for computing these matrices 

is given below: 

P{i,j,d, 0°) = #{((k,l),(m,n)) € (Ly x Lx) 

x{Ly x Lx)k — m = 0, |/ — n| = d, 

I(kJ) = i,I(m,n) = j} 

P{iyji d, 45°) = #{((M),(m,n))€(ZyxZ*) 

~x(Ly x Lx){k — m = d,l — n = —d) 

or(k — m — —d, l — n = d), 

I(k,l) = i,I(m,n) = j} 
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P(i,j,d,90°) = #{{(k,l),{m,n))e{Ly x Lx) 

x(Ly x Lx)\k - m| = d, 

l -n = 0,/(fc,/) = i,I{m,n) = j} 

P(i,j,d, 135°) = #{({k,l),(m,n)) € (Ly x Lx) 

x(Ly x Lx)(k — m = d, l — n = d) 

or(k — m = —d, l — n — —d), 

I(k,l) = i, I(m, n) = ;} 

where # denotes the number of elements in the set. 

Matrices P are of dimension Ng x Ng and are usually normalized to p according 

to the number of nearest neighbor pairs. That is 

P = 

where 

R= < 

2 Ny(NX-d), 

2Nx(Ny-d), 

2(Nx - d){Ny - d), 

if e = o° 

if 6 = 90° 

if 0 = 45° or 0= 135° 

It is assumed that the textural information is adequately specified by these normalized 

SGLD matrices. 

SGLDM based Textural Features 

Haralick et al. (1973) defined 14 features that can be computed from the SGLD 

matrices. Mathematical description of these features taken from Haralick et al. (1973) 
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will be given. The textural information that some of these features represent, from 

a human perception point of view, is not clearly known. Properties represented by 

certain features can be intuitively determined. Explanations for the features will be 

given when known. 

Notation The following notations will be used to define the textural features: 

p(i,j) = the (i,ji)th entry in a normalized SGLD matrix. 

Px(i) = the ith entry in the marginal probability matrix 

obtained by summing the rows of p(i,j). 

Ng = the number of gray levels in the image. 

Ng 

Pyti) = Y1 P(*»i) 
i=l 
Ng Ng 

Px+yik) = E E k = 2,3,...,2Ng. 
t=?U=I i+j=k 

Ng Ng 

Px-yik) = E E p(hi)i k = 0,l,...,Ng-l. 

Ti-jT=* 
Ng 

Px — EZ *Pz(*) 
i=1 
Ng 

Py = 5E JPy(0 
j=1 
Ng 

°x = E (* - Px)2Px(i) 
2 = 1 
Ng 

ay = Il(j-Py)2PyU) 
j=1 
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Textural Features Angular Second Moment(fi) represents the homogeneity 

of the image. It is given by the following equation: 

Ng Ng 

A = £ £ Wc)\2 

*'=1.7=1 

In a homogeneous image, there are very few gray-level changes. Hence, there will be 

fewer entries of large magnitude in the P matrices for this image as compared to a 

large number of entries with small magnitudes for a image with little homogeneity. 

Therefore, the angular second moment feature for a homogeneous image will have a 

higher value. 

Contrast(f2) is a measure of the amount of local variations present in an image. 

Ng-1 

h= E 
n=0 

n 
Ng Ng 

£ £ P(ij) 
i=lj=l 

High amounts of local variations in the image give high values for the contrast feature. 

Correlation (fy) is a measure of linear dependencies of intensity values of an 

image. 
Ng Ng 

E E (ij)p(hj) ~ l*xl*y 
i=lj=l 

h = —  (Tx&y 

where px, Py, &x, and ay are the means and standard deviations of px and py. Cor¬ 

relation will be much higher for an image with large areas of similiar intensities than 

for an image with noisier, uncorrelated intensities (Shearer and Holmes, 1990). 
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Variance (f^) indicates the variations in image intensity values and is calculated 

by the following: 
N 9 N9 

h=Y, £(*- Px)2p(i,j) 
i=lj=l 

For an image with only one gray level, the variance would be zero. 

Inverse Difference Moment (f§) is calculated by the following: 

Nn Nn 
1 

v0 iy9 
p(hj) 

Sum Average (f§) is calculated by the following: 

2 Ng 
fa = H iPx+yi1) 

i=2 

Sum Variance (fj) is calculated by the following: 

2 Ng 

fl= H (* “ h)2Px+y{i) 
i=2 

Sum Entropy (fg) is a measure of the randomness within an image. 

2 Ng 
fa = - £ Par+y(*)l°g(Px+y(*)) 

i=2 

Entropy (f§) is an indication of the complexity of an image and is calculated by 

the following: 
2Ng 

fa = - S 
i=2 

Difference Variance (f\§) is calculated by the following: 

flQ = variance ofpx—y 



www.manaraa.com

16 

Difference Entropy like sum entropy, is also a measure of the randomness 

in an image. 
Ng-l 

/ll = - E Px—y(i) l°g(Pa:—y(0) 
*'=0 

Information Measures of Correlation (fi2ifis) are calculated by the following: 

HXY - HXY1 
fl2 = max[HX, HY] 

and 

/13 = (1 - exp[-2.0(HXY2 - HXY)})? 

where 
Ng Ng 

HXY = -Y. E p(‘.;)i°g(p(i.;)). 
i=lj'=l 

HX and HY are entropies of px and py, and 

Ng Ng 

HXYl = P(hj)log(px(i)py(j)) 

Ng Ng 

HXY2 = - E E Px^)Py(j)l°g(px(i)pyU)) 
i=lj=l 

Maximum Correlation Coefficient (f\<±) is calculated by the following: 

1 
/l4 = (Second largest eigenvalue of Q)? 

Q(hj) Y' P(»'» 
k)p(iik) 

fc=o 
px^py^k) 

Where 
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Gray-Level Run Length Matrices Method 

The GLRLM method was proposed by Galloway (1975) as a texture analysis 

tool. Five textural features were defined which could be computed from the run 

length matrices and were used in the classification of images from nine terrain types. 

These features are: short run emphasis, long run emphasis, gray level distribution, run 

length distribution, and run percentage. Chu et al. (1990) proposed two additional 

features based on run length matrices to complement the earlier defined feature list. 

They are: low gray-level run emphasis and high gray-level run emphasis. Further, 

Dasarathy and Holder (1991) proposed four more textural features which were used 

successfully in the classification of cell images (Dasarathy, 1992). These features are: 

short run low gray-level emphasis, short run high gray-level emphasis, long run high 

gray-level emphasis, and long run low gray-level emphasis. So, the set of 11 features 

was used in this study. 

A gray level run is defined as a set of consecutive, collinear points in the im¬ 

age having the same gray level value (Galloway, 1975). The length of the run is 

the number of image points in the run. For a given image, four GLRL matri¬ 

ces can be computed corresponding to the four principal directions (Figure 2.5)— 

p(i,;,0°),p(i, j,45°),p(i,i,90°),p(i,i, 135°). The matrix element (i,j) specifies the 

number of times that the image contains a run of length j, in the given direction, con¬ 

sisting of points having gray level i (Galloway, 1975). The example below, taken from 

Galloway (1975), shows a 4x4 image having four gray levels (0-3) and the resulting 

GLRL matrices for the four principal directions. 
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0 12 3 

0 2 3 3 
Image : 

2 111 

3 0 3 0 

Runlength 

0° 1 2 3 4 45° 1 2 3 4 

0 
Graylevel 

4 0 0 0 0 4 0 0 0 

1 1 0 1 0 1 4 0 0 0 

2 3 0 0 0 2 0 0 1 0 

3 3 1 0 0 3 3 1 0 0 

Runlength 

90° 1 2 3 4 135° 1 2 3 4 

0 
Graylevel 

2 1 0 0 0 4 0 0 0 

1 4 0 0 0 1 4 0 0 0 

2 3 0 0 0 2 3 0 0 0 

3 3 1 0 0 3 5 0 0 0 

The number of calculations for computing these matrices is directly propotional 

to the size of the image. 

GLRLM based Textural Features 

The mathematical representation for the 11 textural features that can be com¬ 

puted from the GLRL matrices will be given below. Let 

Ng be the number of gray levels in the image, 
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Nr be the number of different run lengths that occur (so that the 

dimension of the p matrix is Ng x JVr), and 

P be the number of pixels in the image. 

nr, the total number of runs in the image, is used as a normalizing factor 

and is calculated by the following: 

Ng Nr 

E P(*»i) 
*=lj=l 

Textural Features Short Run Emphasis (remphasizes short runs in the 

.9 
image because of the presence of length of the run squared (jL) in the denominator. 

, Ng Nr 
p{>j) 

nri=l;=l r 

Long Run Emphasis (r^) 

l 
N9 Nr 

r2 = — H £ i2p(^i) 
nr i=1 j=l 

•9 Because of the presence of length of the run squared (jL) in the numerator, this 

feature emphasizes long runs. 

Gray Level Distribution (r^J measures the gray level nonuniformity of the image. 

1 Ng l Nr x 2 
r3 = — L 

nr i=1 \j=1 
P(*»J) 

When runs are equally distributed throughout the gray levels, the feature takes on 

its lowest values. High run length values contribute most to ohc function (Galloway, 

1975). 
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Run Length Distribution (r^) is a measure of the nonuniformity of the run 

lengths. 

r4 = — E 

This feature will take low values when runs are equally distributed throughout 

the lengths. 

Run Percentage (r§) is the ratio of the total number of runs to the total number 

of possible runs if all runs had a length of one. 

nr 
r5 = T 

will take low values for images with good linear structure. 

Chu et al. (1990) proposed the next two features to more explicitly characterize 

the gray level distributions in the image. 

Low Gray-level Run Emphasis (rg) 

1 
Ng Nr r6= ~ E E 

nrz=lj=l 

High Gray-level Run Emphasis (rj) 

1 N9 Nr 

n = — E E *2p(bi) 

Dasarathy and Holder (1991) proposed the next four features to emphasize the 

joint distribution properties of the run lengths and gray levels instead of individual 

ones separately. 

Short Run Low Gray-level Emphasis (rg) 

1 ^ p(i,j) 
r8 = — E E ~2~T nr • 1 • 1 z = l J = 1 J 
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Short Run High Gray-level Emphasis (rn) 

1 ^ £ <2p(i,j) 

Long Run High Gray-level Emphasis (r^Q) 

, N9 Nr rio = — E E i2J
2
p(hj) 

nr i=i j=i 

Long i2im Low Gray-level Emphasis (r\\) 

rll = 

1 Ng . 2 / • • \ 

1 J P\%iJ) 
rtr 

*=lj = 1 
z 
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CHAPTER 3. MATERIALS AND METHODS 

Data Acquisition 

Ultrasonic B-mode images from several hundred live beef animals were acquired 

over a two year period by staff at the Animal Science Department and Animal Science 

Extension of Iowa State University. This study includes results from the analysis 

of the first set of 23 images representing 23 different animals. A portable medical 

diagnostic ultrasound imaging unit (model Aloka 500V^) with a 3.5 MHz 17 cm linear 

array transducer was used for field scanning. Images of the rib eye muscle between 

the 12th and 13th ribs were first acquired and stored on a video tape and later were 

digitized in the lab using a personal computer equipped with a frame grabber board. 

The digitized images were of size 410x246 pixels and had 256 gray levels. After 

slaughter, the carcasses were evaluated by a qualified USDA grader to determine the 

marbling scores. Also, % fat in the rib eye samples were chemically determined by 

the n-hexane extraction method. 

^Corometrics Medical Systems, Inc., Wallingford, CT. 
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Texture Analysis 

All the images were transferred to a DEC-500Cr workstation for further pro- 
o 

cessing. PV-WAVE Point<V Click0, a commercial signal\image processing software 

package, was used for displaying the images and for converting them to ASCII format. 

Since each image contained hide, subcutaneous fat. rib bone, and other anatomical 

parts apart from the rib eye muscle, macros were constructed in Point&C'lick to select 

a region of interest(ROI). The macros enabled the automatic selection of the same 

ROI in all images. The time required to complete texture analysis on a image depends 

on the size of the ROI. A ROI of size 80x80 (Figure 3.1) was selected subjectively 

so that it contained good texture information and did not require much computation 

time. 

Figure 3.1: Typical ultrasonic B-mode image of the rib eye muscle in a live animal 
showing the ROI. a) boundary between hide and subcutaneous fat: b) 
boundary between subcutaneous fat and rib eye muscle. 

“Digital Equipment Corporation. Maynard. MA. 
3precision Visuals Inc.. Boulder. CO. 
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Twenty four textural features were calculated (13 based on the SGLDM method 

with d = 1 and 11 based on the GLRLM method) for the ROI using software written 

in the C programming language (program listing is given in the Appendix). The 

SGLDM based feature, maximum correlation coefficient, was not used in the study 

because the method for computing the eigen values would sometimes fail to converge. 

Statistical Analysis 

Statistical analysis of the texture features was done using the SAS^ package. 

Correlation analysis was done to find the mutual correlation coefficients (p) among 

the textural features. Features with high mutual correlations essentially provide 

similar information about tissue properties. Features that significantly correlated 

with %fat or marbling score (p <0.05) were used for further analysis. 

Multiple regression methods were used, for systematic analysis of textural fea¬ 

tures, to find the best regression model for predicting %fat and marbling score. The 

criteria considered for selecting the optimum model were maximum coefficient of de¬ 

termination (R2), minimum root mean square error (for adequacy of the model) and 

a p value less than 0.05 (for significance of the model). 

4SAS Institute, Inc., Cary, NC. 



www.manaraa.com

25 

CHAPTER 4. RESULTS AND DISCUSSION 

First, the correlation between marbling scores and %fat values for the 23 samples 

will be presented. Then the results of the correlation analysis done on the 24 textural 

features will be discussed. Finally the optimum prediction models that were derived 

using multiple regression methods will be presented. 

Tissue Features 

Marbling scores and %fat values for all the rib eye samples used in the study 

are listed in the Appendix. Marbling scores for the 23 samples ranged from 840 to 

1080. Based on these scores, each sample was assigned a quality grade using the 

following scheme: Standard(less than 900), Select(900-990), Choice( 1000-1200), and 

Prime(1300 and above). Five samples were assigned to Standard, 13 to Select, 5 to 

Choice, and none to Prime. The %fat values, determined using the n-hexane method, 

ranged from 1.46% to 7.72%. Figure 4.1 shows the relationship between subjectively 

determined marbling scores and chemically determined %fat values. As can be seen 

in this figure, there is almost a linear relationship between the two tissue features 

with good correlation^ = 0.79). 
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Figure 4.1: Correlation between subjectively determined marbling score and cliei 
ically determined %fat for the rib eye samples used in this study 
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Correlation Analysis 

The coefficients of correlation(p) between the textural features, marbling score, 

and %fat are presented in Table 4.1 (for the SGLDM method) and Table 4.2 (for the 

GLRLM method). The underlined values are significant to the 5% level. The first and 

second lines in the tables give the correlation of each of the features with marbling 

scores and %fat, respectively. The rest of the lines show the mutual correlation 

between the textural features. 

SGLDM based Features 

Referring to Table 4.1, features such as Con, IDM, DV, DE, and IMCl have 

good correlation with both marbling score and %fat. The feature SA, correlated 

very poorly with both the tissue features. Also, some features like ASM, Var, SV, 

SE, and Ent had better correlations with marbling score while others like Corr and 

IMC2 had better correlations with %fat. The mutual correlations between some of 

the textural features were very high which means that there is a lot of redundancy in 

the textural information captured by these features. Examples of strong correlations 

between features are given below with p values in brackets: Con and DV (0.99), Con 

and DE (0.98), IDM and DE (-0.97), and Var and SV (0.99). 

GLRLM based Features 

Among the GLRLM based features, only SRE, LRE, GLD, RLD, and RP had 

significant correlations with the tissue features, m-'r-u,;ng score and %fat (Table 4.2). 

Like the SGLDM based features, there was a general trend of strong mutual correla¬ 

tions between the features. Features like SRE and RLD (p = 0.99), 
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LRE and RP (0.99), RLD and RP (0.99), and LGRE and SRLGE (0.99) repre¬ 

sent similar textural information. 

Regression Models 

Multiple regression methods were used to derive the optimum linear combination 

of features such that the regression models gave the maximum coefficient of determi¬ 

nation (R?), the minimum root MSE (for adequacy of the model), and p value less 

than 0.05 (for significance of the model). The regression models for predicting mar¬ 

bling score and %fat using SGLDM and GLRLM based textural features are given 

in Figure 4.2. Figure 4.3 shows the prediction of %fat using SGLDM based features. 

There is a general trend among the regression models to over predict low values and 

under predict high values of %fat and marbling score. Increasing the data set to have 

a more even distribution may help to improve the predicting ability of the regression 

models. 
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SGLDM Method GLRLM Method 

# of features = 7 # of features = 5 

Marbling Rl= 0.57 R2 = 0.51 
Score root MSE = 55 root MSE = 54 

p < 0.05 p < 0.05 

# of features = 7 # of features = 3 

%fat R2= 0.60 R2 = 0.36 
root MSE =1.36 root MSE =1.53 
p < 0.05 p < 0.05 

Figure 4.2: Regression models for predicting marbling score and %fat using SGLDM 
and GLRLM based textural features 

Figure 4.3: Predicted %fat versus actual %fat using SGLDM based textural features 
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CHAPTER 5. CONCLUSION AND RECOMMENDATIONS FOR 

FUTURE RESEARCH 

In this study, texture analysis of ultrasonic B-mode images using the SGLDM 

(spatial gray-level dependence matrices method) and GLRLM (gray-level run length 

matrices method) methods was investigated for predicting marbling in the rib eye 

muscle of live beef animals. Statistical analysis was used to develop regression models 

for predicting marbling score and %fat. Both tissue features were predicted with good 

accuracy. The SGLDM method gave better results than the GLRLM method for this 

application. 

This study showed that B-mode image analysis is a promising alternative ap¬ 

proach for predicting marbling and that it should be pursued in addition to A-mode 

signal analysis which has been studied for the past 10 years. Efforts are underway at 

Iowa State University to continue this study using a larger data set. Pattern recog¬ 

nition methods such as discriminant analysis and artificial neural networks can be 

used to develop a classification scheme based on the textural features for assigning 

quality grades. A feasibility study of applying neural networks for this application 

has already been done using features based on spectrum analysis-of A-mode signals 

(Amin et al., 1992). 

Since there was a lot of redundancy in the information represented by the textu- 
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ral features used in this study, other texture analysis methods such as Fourier power 

spectrum (FPS) and fractional brownian motion (Wu et al., 1992) can be investigated 

to see if there is any improvement in predicting marbling. Wu et al. (1992) have re¬ 

ported the better performance of fractional brownian motion model based feature set 

when compared to features based on the SGLDM and FPS methods for classification 

of ultrasonic liver images. Other features such as age and back-fat layer thickness 

can be used to improve the predicting ability of the above models. 

The final goal is two fold: 1) to develop a robust scheme for objectively assigning 

quality grades to beef carcasses and 2) to accurately predict marbling in live beef 

animals so that they can be more effectively marketed. 
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APPENDIX 

Marbling Score and %Fat Values for Rib Eye Samples 

Sample-ID Marbling Score %Fat 
047 840 1.46 
051 980 4.12 
053 930 4.19 
060 1080 6.68 
061 960 3.95 
071 980 4.34 
075 850 1.78 
083 1070 6.76 
087 1040 7.72 
088 900 2.89 
094 960 2.25 
099 930 4.77 
101 950 3.89 
106 850 1.61 
110 970 2.82 
113 990 3.77 
135 880 3.49 
138 1030 5.48 
157 970 6.36 
171 880 2.99 
174 1010 2.79 
186 900 1.75 
189 910 2.29 
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C Programs for Computing Textural Features 

/* Program for calculating textural features based on the spatial 

** gray-level dependence matrices method. 

** 

** Author: P. R. Arul 

** 

*/ 

#include <stdio.h> 

#include <math.h> 

#define LX 80 

#define LY 80 

#define G 256 

#define d 1 

#define epsilon 0.000000001 

extern void mainl(int I[LX][LY].FILE *fp4); 

gtsdm(int I[LY][LX]); 

display(float **p); 

mpmrow(float **p,float *q); 

mpmcol(float **p,float *q); 

funcpx_plus_y(float **p,float *q); 

funcpx_minus_y(float **p,float *q); 

float ang_second_mom(float **p); 

float findcorr(float **p, float q[G], float r[G]); 

float findcontrast(float **p) ; 

float findvariance(float **p); 

float inv.diff_mom(float **p); 

float sum.avg(float q[2*G-l]); 

float sum.entropy(float q[2*G-l]); 

float sum_variance(float q[2*G-l] , float SA); 

float findentropy(float **p) ; 

float diff_entropy(float q[G]); 

float diff_variam.ee(float q[G]); 

float *info_M_corr(float **p,float q[G].float r[G].float EP); 

float **matrix(); 

float **p0,**p45,**p90,**pl35,px0[G],px45[G],px90[G],px!35[G]; 
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float pyO[G],py45[G],py90[G],pyl35[G],px_p_yO[2*G+l],px_p_y45[2*G+1], 

px_p_y90[2*G+1],px_p_yl35[2*G+1]; 

float px_m_yO[G],px_m_y45[G],px_m_y90[G],px_m_yl35[G]; 

float meu_x; 

float EP1,EP2,EP3,EP4; 

int glevel[G]; 

int level; 

FILE *fp2,*fp4; 

main(int argc, char *argv[]) 

{ • 

FILE *fpl; 

int I [LY] [LX] ,i, j ,1c; 

float R0,R45,R90; 

float ASM1,ASM2,ASM3,ASM4,CONI,C0N2,C0N3,C0N4; 

float C0RR1,C0RR2,C0RR3,C0RR4,VAR1,VAR2,VAR3,VAR4; 

float IDM1,IDM2,IDM3,IDM4,SA1,SA2,SA3,SA4; 

float SE1,SE2,SE3,SE4,SV1,SV2,SV3,SV4; 

float DE1,DE2,DE3,DE4,DV1,DV2,DV3,DV4; 

float *ptrl; 

float IN.C0RR11,IN.C0RR12,IN.C0RR13,IN.C0RR14,IN_C0RR21,IN_C0RR22, 

IN.C0RR23,IN.C0RR24; 

fpl = fopen(argv[l],"r"); 

for(i=0; i<LY; i++M 

for(j=0; j<LX; j++){ 

f scanf (fpl, "'/,d" ,&I [i] [j]); 

> 

> 

for(i=0; i<G; i++) 

glevel[i] = -1; 

for(i=0; i<LX; i++){ 

for(j=0; j<LY; j++){ 

glevel [I [i] [j]]=I[i] [j] ; 

> 

> 

for(k=0, level=0; k<G; k++) 

if(glevel[k]!=-l) 

glevel[level++] = glevel[k]; 
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printf("no. of grey levels in the image= '/,d\n" .level); 

/* Allocate memory for spatial gray-level dependence matrices 

pO = matrix (0, level, 0, level); 

p45 = matrix (0, level, 0, level); 

p90 = matrix (0, level, 0, level); 

pl35 = matrix (0, level, 0, level); 

for(i=0; i<level; i++) 

for(j=0; j<level; j++){ 

p0[i] [j] = p45[i] [j] = 0; 

p90[i][j] = pl35[i] [j] = 0; 

} 
printf("computing co-occurence matrices "); 

gtsdm(I); 

printf("done\n"); 

fp4 = fopen("tex_result","a"); 

/* Normalizing constants */ 

R0 = 2.0 * LY * (LX - d); 

R45 = 2.0 * (LX - d) * (LY - d); 

R90 = 2.0 * (LY - d) * LX; 

for(i=0; i<level; i++) 

for(j=0; j<level; j++){ 

p0[i] [j] /= R0; 

p45[i] [j] /= R45; 

p90[i] [j] /= R90; 

pl35[i] [j] /= R45; 

} 
fp2 = fopen("gtsdmatrixl","w"); 

printf ("computing parameters "); 

mpmrow(pO.pxO); mpmrow(p45,px45); mpmrow(p90,px90); 

mpmrow(pl35,pxl35); 

mpmcol(pO.pyO); mpmcol(p45,py45); mpmcol(p90,py90); 

mpmcol(pl35,pyl35); 

funcpx_plus_y(p0,px_p_y0); funcpx_plus_y(p45,px_p_y45); 

funcpx_plus_y(p90,px_p_y90); funcpx_plus_y(p!35,px_p_yl35); 
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funcpx_minus_y(pO,px_m_yO); funcpx_minus_y(p45,px_m_y45); 

funcpx_minus_y(p90,px_m_y90); funcpx_minus_y(pl35,px_m_yl35); 

ASM1 = ang.second.mom(pO); ASM2 = ang_second_mom(p45); 

ASM3 = ang_second_mom(p90); ASM4 = ang_second_mom(pl35); 

C0RR1 = findcorr(pO,pxO,pyO); C0RR2 = findcorr(p45,px45,py45); 

C0RR3 = findcorr(p90,px90,py90); CORR4 = findcorr(pl35,pxl35,pyl35); 

CONI = findcontrast(pO); C0N2 = findcontrast(p45); 

C0N3 = findcontrast(p90); C0N4 = findcontrast(pl35); 

VAR1 = findvariance(pO); VAR2 = findvariance(p45); 

VAR3 = findvariance(p90); VAR4 = findvariance(pl35); 

IDM1 = inv.diff_mom(pO); IDM2 = inv.diff_mom(p45); 

IDM3 = inv_diff_mom(p90); IDM4 = inv_diff_mom(pl35); 

SA1 = sum_avg(px_p_yO); SA2 = sum_avg(px_p_y45); 

SA3 = sum_avg(px_p_y90); SA4 = sum_avg(px_p_yl35); 

SE1 = sum_entropy(px_p_yO); SE2 = sum_entropy(px_p_y45); 

SE3 = sum_entropy(px_p_y90); SE4 = sum_entropy(px_p_yl35); 

SV1 = sum_variance(px_p_yO,SAl); SV2 = sum_variance(px_p_y45,SA2); 

SV3 = sum_variance(px_p_y90,SA3); SV4 = sum_variance(px_p_yl35,SA4); 

EP1 = findentropy(pO); EP2 = findentropy(p45); 

EP3 = findentropy(p90); EP4 = findentropy(p135); 

DEI = diff.entropy(px_m_yO); DE2 = diff.entropy(px_m_y45); 

DE3 = diff.entropy(px_m_y90); DE4 = diff.entropy(px.m.y135); 

DV1 = diff .variance(px.m.yO); DV2 = diff.variance(px_m_y45); 

DV3 = diff.variance(px_ra_y90); DV4 = diff_variance(px_m_yl35); 

ptrl = info.M.corrCpo,pxO,pyO,EP1); IN.C0RR11 = *ptrl++; 

IN.C0RR21 = *ptrl; 

ptrl = info_M_corr(p45,px45,py45,EP2); IN.C0RR12 = *ptrl++; 

IN.C0RR22 = *ptrl; 
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ptrl = info_M_corr(p90,px90,py90,EP3); IN_C0RR13 = *ptrl++; 

IN.C0RR23 = *ptrl; 

ptrl= info_M_corr(pl35,pxl35,pyl35,EP4);IN_C0RR14 = *ptrl++; 

IN.C0RR24 = *ptrl; 

fprintf (fp4,"'/,s\xi" ,argv[l] ) ; 

fprintf (fp4,"cl\t,/,11.5f\t,/.11.5f\t,/,11.5f\t'/.11.5f\t,/,11.5f\n",ASMl, 

ASM2,ASM3,ASM4,(ASM1+ASM2+ASM3+ASM4)/4.0); 

fprintf (fp4, "c2\t'/,l 1.5f\t'/,l 1.5f\t'/,l 1.5f1.5f\t'/,l 1.5f\n" ,CONI, 

C0N2,C0N3,C0N4,(C0N1+C0N2+C0N3+C0N4)/4.0); 

fprintf (fp4, "c3\t'/t 11.5f\t'/,l 1.5f\t'/.l 1.5f Yf/,1 1.5f \t'/,l 1.5f \n", C0RR1, 

C0RR2,C0RR3,C0RR4,(C0RR1+C0RR2+C0RR3+C0RR4)/4.0); 

fprintf (fp4, "c4\t,/.ll. 5f\t’/,ll. 5f'Vt'/.ll. 5f\t‘/.ll. 5f\tJSll .5f \n", VAR1, 

VAR2,VAR3,VAR4,(VAR1+VAR2+VAR3+VAR4)/4.0); 

fprintf (fp4,"c5\t'/,ll.5f\t'/,ll.5f\t'/,ll.5f\t'/,ll.5f\t'/,ll .5f\n",IDM1, 

IDM2,IDM3,IDM4,(IDM1+IDM2+IDM3+IDM4)/4.0); 

fprintf (fp4,"c6\t*/,ll .5f\t'/,ll .5f\t'/,ll .5f\t7,ll .5f\t'/,ll .5f\n" ,SA1, 

SA2,SA3,SA4,(SA1+SA2+SA3+SA4)/4.0); 

fprintf (fp4, "c7\t'/,l 1.5f\t'/,l 1.5f\t*/,l 1.5f \t%l 1.5f\t'/,l 1.5f \n", SV1, 

SV2,SV3,SV4,(SV1+SV2+SV3+SV4)/4.0); 

fprintf (f p4, "c8\t'/.l 1.5f\t'/,l 1.5f\t'/,l 1.5f \t'/,l 1.5f\t'/,l 1.5f \n", SE1, 

SE2,SE3,SE4,(SE1+SE2+SE3+SE4)/4.0); 

fprintf (fp4, "c9\t'/.l 1.5f'Vt’/.l 1.5f \t'/,l 1.5f\t'/.l 1.5f \t*/,l 1.5f \n", EP1, 

EP2,EP3,EP4,(EPl+EP2+EP3+EP4)/4.0); 

fprintf (fp4, "clO\t'/,ll. 5f \t'/,ll. 5f\t'/,ll. 5f\t’/,ll. 5f\t'/,ll. 5f \n" ,DV1, 

DV2,DV3,DV4,(DVl+DV2+DV3+DV4)/4.0); 

fprintf (fp4, "cll\t'/, 11.5f'Vt'/.ll. 5f'Vt'/.ll. 5f \t'/.ll. 5f\ty,ll. 5f\n" ,DE1, 

DE2,DE3,DE4,(DEl+DE2+DE3+DE4)/4.0); 

fprintf (fp4, "cl2\ty.ll. 5f \t'/.ll. 5f\t'/.ll. 5f Xt'/.ll. 5f\t'/,l 1.5f \n" , 

IN.C0RR11,IN.C0RR12,IN.C0RR13,IN.C0RR14, 

(IN_C0RRll+IN_C0RR12+IN_C0RR13+IN_C0RR14)/4.0); 

fprintf (fp4, "cl3\ty,ll. 5f \ty,ll. 5f \ty,ll. 5f\t'/.ll. 5f'\tXll. 5f \n" , 

IN_C0RR21,IN.C0RR22,IN.C0RR23,IN.C0RR24, 

(IN_C0RR21+IN_C0RR22+IN_C0RR23+IN_C0RR24)/4.0); 

printf("done\n"); 

mainl(I,fp4); 

fclose(fpl); 

fclose(fp2); 
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fclose(fp4); 

> 

/♦FUNCTION TO FIND THE SPATIAL GRAY-LEVEL DEPENDENCE MATRICES 
gtsdm(int I [] [LY] ) 

{ 
int i,j,x,y,angle; 

for (i= 0; i< LX; i++) 

for (j =0; j < LY; j++) 

for (x = 0, angle = 0; angle <= 135; angle += 45) 

while (glevel[x] != I[i][j]) 

x++; 

if (angle == 0 && j + d < LY) 

{ 
y = 0; 

while (glevel[y] != I[i][j + d]) 

y++; 

pO [x] [y] ++; 

p0 [y] [x] ++; 

> 

if (angle == 90 && i + d < LX) 

{ 
y = 0; 

while (glevel[y] != I[i + d][j]) 

y++; 
p90 [x] [y]++; 

p90[y][x]++; 

} 
if (angle == 45 && i + d < LX && j - d >= 0) 
{ 

y = 0; 

while (glevel[y] != I [i + d] [j - d]) 

y++; 
p45 [x] [y] ++; 

p45[y][x]++; 

> 

if (angle == 135 && i + d < LX && j + d < LY) 



www.manaraa.com

44 

y * 0; 
while (glevel[y] != I [i + d] [j + d]) 

y++; 
pl35[x] [y]++; 

pl35[y] [x]++; 

> 

> 

> 

display(float **p) 

{ 
int i,j ; 

for(i=0; i<level; i++){ 

for(j=0; jcievel; j++){ 

fprintf(fp2," '/.f ",p[i][j]); 

> 

fprintf(fp2,"\n"); 

> 

fprintf(fp2,"\n"); 

> 

/♦ FUNCTION TO FIND THE MARGINAL PROB MATRIX BY SUMMING THE ROWS */ 

mpmrow(float **p,float *q) 

{ 
int i,j; 

float sum; 

for(i=0; i<level; i++){ 

sum = 0; 

for(j=0; j<level; j++){ 

sum += p[i] [j]; 

> 

*(q+i) = sum; 

> 

> 

/♦FUNCTION TO FIND THE MARGINAL PROB MATRIX BY SUMMING THE COLUMNS */ 
mpmcol(float **p,float *q) 

{ 
int i,j; 

float sum; 
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for(i=0; i<level; i++){ 

sum * 0; 

for(j=0; j<level; j++){ 

sum +* p[j] [i] ; 

> 

♦(q+i) ■ sum; 

> 

/♦FUNCTION TO FIND P X+Y ♦/ 
funcpx_plus_y(float ^p, float +q) 

int i,j,k; 

float sum; 

for(k=0; k<(2*level-l); k++){ 

sum * 0; 

for(i=0; i<level; i++){ 

for(j=0; jClevel; j++){ 

if(Ci+j) »» k) 

sum +» p[i] [j] ; 

> 

> 

*(q+k+2) * sum; 

} 

/♦FUNCTION TO FIND P X-Y ♦/ 
funcpx_minus_y(float **p,float *q) 

{ 

int i,j,k; 

float sum; 

for(k=0; k<level; k++){ 

sum = 0; 

for(i=0; i<level; i++){ 

for(j=0; j<level; j++){ 

if(abs(i-j) k) 

sum += p[i] Cj] ; 

> 

> 

*(q+k) = sum; 
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> 

> 

/* FUNCTION TO FIND THE ANGULAR SECOND MOMENT */ 

float ang_second_mom(float **p) 

•c 
int i,j; 

float sum=0; 

for(i=0; i<level; i++){ 

for(j=0; j<level; j++){ 

sum += p[i] [j]*p[i] [j] ; 

> 

> 

return sum; 

} 

/* FUNCTION TO FIND CORRELATION */ 

float findcorr(float **p, float q[G], float r[G]) 

int i,j ; 

float sum=0,meu_y,sd_x,sd_y,corr; 

for(i=0; Klevel; i++){ 

sum += i*q[i]; 

> 

meu_x = sum; 

sum = 0; 

for(j=0; j<level; j++){ 

sum += j*r[j] ; 

> 

meu_y = sum; 

sum = 0; 

for(i=0; Klevel; i++){ 

sum +* (i- meu_x)*(i - meu_x)*q[i]; 

> 

sd_x = sqrt(sum); 

sum = 0; 

for(j=0; j<level; j++){ 

sum += (j - meu_y)*(j - meu_y)*r[j]; 

> 
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sd_y = sqrt(sum); 

sum = 0; 

for(i=0; i<level; i++){ 

for(j=0; j<level; j++){ 

sum += i*j*p[i] [j] ; 

> 

> 

corr = (sum - meu_x*meu_y)/(sd_x*sd_y); 

return corr; 

} 

/* FUNCTION TO FIND CONTRAST 

float findcontrast(float **p) 

{ 
int i,j,n; 

float sum,suml=0; 

for(n=0; n<level; n++){ 

sum = 0; 

for(i=0; i<level; i++){ 

for(j=0; j<level; j++){ 

if(abs(i-j) == n) 

sum += p[i] [j] ; 

> 
} 
suml += n*n*sum; 

> 

return suml; 

> 

/* FUNCTION TO FIND VARIANCE 

float findvariance(float **p) 

int i,j; 

float sum=0; 

for(i=l; i<level; i++){ 

for(j=l; j<level; j++){ 

sum += p[i] [j]*(i - meu_x)*(i 

> 

> 

return sum; 

*/ 

- meu_x) 
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> 

/* FUNCTION TO FIND THE INVERSE DIFFERENCE MOMENT 

float inv.diff_mom(float **p) 

{ 
int i,j; 

float sum=0; 

for(i=0; icievel; i++){ 

for(j=0; j<level; j++){ 

sum += p[i]Cj]/(l+(i-j)*(i-j)); 

> 

> 

return sum; 

} 

/* FUNCTION TO FIND THE SUM AVERAGE */ 

float sum_avg(float q[2*G+l]) 

int i; 

float sum=0; 

for(i=2; i<=(2*level); i++){ 

sum += i*q[i]; 

> 

return sum; 

> 

/* FUNCTION TO FIND SUM ENTROPY */ 

float sum_entropy(float q[2*G+l]) 

{ 
int i; 

float sum=0; 

for(i=2; i<=(2*level); i++){ 

sum += q[i] * loglO(q[i] + epsilon); 

> 

return -sum; 

> 
/* FUNCTION TO FIND SUM VARIANCE */ 

float sum.variance(float q[2*G+l], float SA) 

int i; 

float sum=0; 
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for(i=2; i<=(2*level); i++){ 

sum += (i - SA)*(i - SA)*q[i]; 

> 

return sum; 

} 
/* FUNCTION TO FIND ENTROPY */ 

float findentropy(float **p) 

{ 
int i,j; 

float sum=0; 

for(i=0; i<level; i++){ 

for(j=0; j<level; j++){ 

sum += p[i] [j]*loglO(p[i] [j] + epsilon); 

> 

> 

return -sum; 

> 

/* FUNCTION TO FIND DIFFERENCE ENTROPY */ 

float diff.entropy(float q[G]) 

{ 
int i; 

float sum=0; 

for(i=0; i<level; i++){ 

sum += q[i] *loglO(q[i] + epsilon); 

> 

return -sum; 

} 
/* FUNCTION TO FIND DIFFERENCE VARIANCE */ 

float diff.variance(float q[G]) 

{ 
int i; 

float sum=0,DA=0; 

for(i=0; i<level; i++H 

DA += i*q[i]; 

> 

for(i=0; i<level; i++){ 

sum += (i - DA)*(i - DA)*q[i]; 

} 
return sum; 

> 
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/* FUNCTION TO FIND INFORMATION MEASURES OF CORRELATION */ 

float *info_M_corr(float **p,float q[G].float r[G] .float EP) 

int i,j; 

float sum=0,suml=0,sum2=0,sum3=0,HX,HY,HXY1,HXY2,max,a[2]; 

for(i=0; i<level; i++M 

sum += q[i]*loglO(q[i] + epsilon); 

suml += r[i]*loglO(r[i] + epsilon); 

for(j=0; j<level; j++){ 

sum2 +* p[i] [j]*loglO(q[i]*r[j] + epsilon); 

sum3 += q[i]*r[j]*loglO(q[i]*r[j] + epsilon); 

> 
> 

HX = -sum; HY = -suml; HXY1 = -sum2; HXY2 = -sum3; 

max = (HX > HY) ? HX:HY; 

a[0] = (EP - HXY1)/max; 

a[l] = sqrt(1 - exp(-2.0*(HXY2 - EP))); 

return a; 

> 

float **matrix (nrl, nrh, ncl, nch) 

int nrl, nrh, ncl, nch; 

/* Allocates a float matrix with range [nrl..nrh][ncl..nch] */ 

{ 
int i; 

float **m; 

/* allocate pointers to rows */ 

m = (float **) malloc ((unsigned) (nrh - nrl + 1) * sizeof 

(float *)); 

if (!m) 

fprintf (stderr, "memory allocation failure"), exit (1); 

m -= ncl; 

/* allocate rows and set pointers to them */ 

for (i = nrl; i <= nrh; i++) 

m[i] = (float *) malloc ((unsigned) (nch - ncl + 1) * sizeof 

(float)); 

if (!m[i] ) 

fprintf (stderr, "memory allocation failure"), exit (2); 



www.manaraa.com

51 

m[i] -* ncl; 

> 
/* return pointer to array of pointers to rows 

return m; 

> 
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/* Program for calculating textural features based on the gray-level 

** run length matrices. 

** 

** Author: P. R. Arul 

** 

** 

*/ 

#include <stdio.h> 

#define N 80 

#define G 256 

#define LX 80 

#define LY 80 

runlen(int I[LX][LY]); 

display1(float R[G][N]); 

float compute_Nr(float R[G][N]); 

float sre(float R[G][N].float Nr); 

float Ire(float R[G][N].float Nr); 

float gld(float R[G][N].float Nr); 

float rld(float R[G][N].float Nr); 

float lgre(float R[G][N].float Nr); 

float hgre(float R[G][N].float Nr); 

float srlge(float R[G][N].float Nr); 

float srhge(float R[G][N].float Nr); 

float lrhge(float R[G][N].float Nr); 

float lrlge(float R[G][N].float Nr); 

float R0[G] [N] ,R45[G] [N] ,R90[G] [N] ,R135[G] [N] ; 

FILE *fp3; 

mainl(int I[][LY],FILE *fp4) 

int i.j; 

char chi[25]; 

float Nrl,Nr2,Nr3,Nr4; 

float SRE1,SRE2,SRE3,SRE4,LRE1,LRE2,LRE3,LRE4,GLD1,GLD2,GLD3,GLD4; 

float RLD1,RLD2,RLD3,RLD4,RPC1,RPC2,RPC3,RPC4; 

float LGRE1,LGRE2,LGRE3,LGRE4,HGRE1,HGRE2,HGRE3,HGRE4; • 
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float SRLGE1,SRLGE2,SRLGE3,SRLGE4,SRHGE1,SRHGE2,SRHGE3,SRHGE4; 

float LRHGE1,LRHGE2,LRHGE3,LRHGE4,LRLGE1,LRLGE2,LRLGE3,LRLGE4; 

/♦printf("name the image file\n") ; 

scanf ("y,25s" ,chl) ; 

fpl = fopen(chl,"r"); 

for(i=0; i<LX; i++){ 

for(j=0; j<LY; j++){ 

fscanf (fpl,"'/,d",ftl[i] [j]); 

} 
}*/ 

for(i=0; i<G; i++) 

for(j=0; j<N; j++H 

RO[i] [j] = R45[i] [j] = 0; 

R90[i][j] = R135[i][j] =0; 

> 

printf ("computing run length matrices ") ; 

runlen(I); 

printf("done\n"); 

fp3 = fopen("runlenmatrixl","w") ; 

printf ("computing run length parameters "); 

Nrl = compute_Nr(R0);Nr2 = compute_Nr(R45);Nr3 = compute_Nr(R90); 

Nr4 = compute_Nr(R135); 

SREl=sre(R0,Nrl);SRE2=sre(R45,Nr2);SRE3=sre(R90,Nr3); 

SRE4=sre(R135,Nr4); 

LREl=lre(R0,Nrl);LRE2=lre(R45,Nr2);LRE3=lre(R90,Nr3); 

LRE4=lre(R135,Nr4); 

GLDl=gld(R0,Nrl);GLD2=gld(R45,Nr2);GLD3=gld(R90,Nr3); 

GLD4=gld(R135,Nr4); 

RLDl=rld(RO,Nr1);RLD2=rld(R45,Nr2);RLD3=rld(R90,Nr3); 

RLD4=rld(R135,Nr4); 

RPCl=Nrl/(LX*LY);RPC2=Nr2/(LX*LY);RPC3=Nr3/(LX*LY);RPC4=Nr4/(LX*LY); 

LGREl=lgre(RO,Nrl);LGRE2=lgre(R45,Nr2);LGRE3=lgre(R90,Nr3); 

LGRE4=lgre(R135,Nr4); 

HGRE1=hgre(RO,Nr1);HGRE2=hgre(R45,Nr2);HGRE3=hgre(R90,Nr3); 

HGRE4=hgre(R135,Nr4); 
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SRLGEl=srlge(RO,Nr1);SRLGE2=srlge(R45,Nr2);SRLGE3=srlge(R90,Nr3); 

SRLGE4=srlge(R135,Nr4); 

SRHGEl=srhge(RO,Nrl);SRHGE2=srhge(R45,Nr2);SRHGE3=srhge(R90,Nr3); 

SRHGE4=srhge(R135,Nr4); 

LRHGEl=lrhge(RO,Nrl);LRHGE2=1rhge(R45,Nr2);LRHGE3=lrhge(R90,Nr3); 

LRHGE4=lrhge(R135,Nr4); 

LRLGE1=lrlge(RO,Nr1);LRLGE2=1rlge(R45,Nr2);LRLGE3=lrlge(R90,Nr3); 

LRLGE4=lrlge(R135,Nr4); 

printf("done\n"); 

f printf (f p4, "rl\t'/.l 1.5f\t'/,l 1.5f\t'/,l 1.5f \t'/,l 1.5f\t'/.l 1.5f \n", SRE1, 

SRE2,SRE3,SRE4,(SRE1+SRE2+SRE3+SRE4)/4.0); 

fprintf (fp4, "r2\t'/,ll. 5f \t'/,l 1.5f\t'/,ll. 5f\t'/,l 1.5f\t'/,l 1.5f \n" ,LRE1, 

LRE2,LRE3,LRE4,(LRE1+LRE2+LRE3+LRE4)/4.0); 

f printf (f p4, "r3\ty,l 1.5f\t'/.l 1.5f\t'/,l 1.5f \t'/,l 1.5f\t'/,l 1.5f \n", GLD1, 

GLD2,GLD3,GLD4,(GLD1+GLD2+GLD3+GLD4)/4.0); 

f printf (fp4, "r4\t'/.l 1.5f \t'/.l 1.5f\t*/,l 1.5f\t’/,l 1.5f\t’/.l 1.5f \n" , RLD1, 

RLD2.RLD3.RLD4,(RLD1+RLD2+RLD3+RLD4)/4.0); 

f printf (fp4, "r5\t'/,l 1.5f \t'/,l 1.5f \t’/,l 1.5f \t'/,l 1.5f\t'/,l 1.5f \n" ,RPC1, 

RPC2.RPC3.RPC4,(RPCl+RPC2+RPC3+RPC4)/4.0); 

fprintf (fp4,"r6\t'/,ll.5f\t%ll.5f\t'/,ll.5f\t'/,ll.5f\t'/,ll.5f\n" .LGREl, 

LGRE2,LGRE3,LGRE4,(LGRE1+LGRE2+LGRE3+LGRE4)/4.0); 

fprintf (fp4, "r7\t'/,ll. 5f Yt'/.ll. 5f \t'/.ll. 5f\t'/,ll. 5f\t'/,ll.5f\n" .HGREl, 

HGRE2,HGRE3,HGRE4,(HGRE1+HGRE2+HGRE3+HGRE4)/4.0); 

fprintf (f p4, "r8\t'/.l 1.5f\t'/,l 1.5f \t%l 1.5f \t'/,l 1.5f\t’/,l 1.5f \n", SRLGE1, 

SRLGE2,SRLGE3,SRLGE4,(SRLGE1+SRLGE2+SRLGE3+SRLGE4)/4.0); 

fprintf (fp4, "r9\t'/.l 1.5f\t7.11.5fXt’/.l 1.5f\t*/,l 1.5f\t’/.l 1.5f\n" , SRHGE1, 

SRHGE2,SRHGE3,SRHGE4,(SRHGE1+SRHGE2+SRHGE3+SRHGE4)/4.0); 
fprintf(fp4,"rl0\tXll.5f\tXll.5f\tXll.5f\tXll.5f\t%11.5f\n",LRHGEl, 

LRHGE2,LRHGE3,LRHGE4,(LRHGE1+LRHGE2+LRHGE3+LRHGE4)/4.0); 

fprintf (fp4, "rll\t'/,ll.5f \t'/,ll. 5f \ty,ll. 5f \t'/,ll. 5f\t'/,ll. 5f \n" ,LRLGE 1, 

LRLGE2,LRLGE3,LRLGE4,(LRLGE1+LRLGE2+LRLGE3+LRLGE4)/4.0); 

fprintf(fp4,"\n"); 

fclose(fp3); 

> 

*f /♦function to compute the gray-level run length matrices 
runlen(int I[][LY]) 
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int i,j,k,gl,rl,a,count=0; 

for(gl=0; gl<G; gl++){ 

for(i=0; i<LX; i++){ 

for(j=0; j<LY; j++){ 

if ClCi]Cj] == gl){ 
k=0; 

while(j+k<LY kk I[i][j+k] == gl){ 
k++; 

> 

j+=k; 

RO[gl] [k]+=l; 

> 

> 

} 
for(i=0; i<LX; i++){ 

for(j=0; j<LY; j++){ 

if(I[i][j] == gl){ 

k=0; 

if (i”0 II j—LY-1 II I [i-1] Cj + 1] !=gl){ 

while(i+k<LX k& j-k>=0 && I[i+k][j-k] == gl){ 
k++; 

> 
R45[gl][k]+=l; 

> 

> 

> 
> 

for(j=0; j<LY; j++){ 

for(i=0; i<LX; i++){ 

if(I[i][j] == gl){ 

k=0; 

while(i+k<LX kk I[i+k][j] == gl){ 
k++; 

> 

i+=k; 

R90 [gl] [k]+=l; 

> 

> 

> 

for(i=0; i<LX; i++){ 
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for(j=0; j<LY; j++K 

if (I[i] [j] == gl){ 

k=0; 

if(i==0 || j==0 || I[i-1][j-1]!=gl){ 

while(i+k<LX kk j+k<LY kk I[i+k][j+k] == gl){ 
k++; 

> 

R135[gl][k]+=l; 

} 
} 

> 

> 

> 

> 

displayl (float R[] [N] ) 

{ 
int i,j; 

for(i=0; i<G; i++){ 

for(j=l; j<=N; j++){ 

fprintf (fp3," '/,f " ,R[i] Cj] ); 

> 

fprintf(fp3,"\n"); 

> 

fprintf(fp3,"\n"); 

> 

/* FUNCTION TO COMPUTE Nr 

float compute_Nr(float R[][N]) 

{ 
int i,j; 

float sum=0; 

for(i=0; i<G; i++){ 

for(j=0; j<N; j++H 

sum += R[i] [j] ; 

> 
> 

return sum; 

} 
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/* FUNCTION TO COMPUTE SHORT RUN EMPHASIS (SRE) */ 

float sre (float R[] [N], float Nr) 

int i.j; 

float sum=0; 

for(i=l; i<G; i++){ 

for(j=l; j<N; j++){ 

sum += R[i] [j]/(j*j); 

> 

> 

return sum/Nr; 

> 

/* FUNCTION TO COMPUTE LONG RUN EMPHASIS (LRE) */ 

float Ire (float R[] [N] .float Nr) 

{ 
int i.j; 

float sum=0; 

for(i=l; i<G; i++){ 

for(j=l; j<N; j++H 

sum += R[i] Cj]*(j*j); 

> 

> 

return sum/Nr; 

> 

/* FUNCTION TO COMPUTE GREY LEVEL DISTRIBUTION (GLD) */ 

float gld(float R[] [N] .float Nr) 

int i.j; 

float sum=0,suml=0; 

for(i=l; i<G; i++){ 

sum=0; 

for(j = l; j<N; j++){ 

sum += R[i] [j] ; 

> 

suml += sum*sum; 

> 

return suml/Nr; 

> 
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/* FUNCTION TO COMPUTE RUN LENGTH DISTRIBUTION (RLD) */ 

float rld(float R[][N].float Nr) 

{ 
int i.j; 

float sum=0,sum1=0; 

for(j=l; j<N; j++){ 

sum=0; 

for(i=l; i<G; i++){ 

sum += R[i] [j] ; 

> 

suml += sum*sum; 

> 

return suml/Nr; 

> 

/* FUNCTION TO COMPUTE LOW GRAY-LEVEL RUN EMPHASIS (LGRE) */ 

float lgre(float R[] [N] .float Nr) 

i 
int i,j; 

float sum=0; 

for(i=l; i<G; i++){ 

for(j=l; j<N; j++){ 

sum += R[i][j]/(i*i); 

> 

> 

return sum/Nr; 

> 

/* FUNCTION TO COMPUTE HIGH GRAY-LEVEL RUN EMPHASIS (HGRE) */ 

float hgre(float R[] [N] .float Nr) 

int i.j; 

float sum=0; 

for(i=l; i<G; i++){ 

for(j=l; j<N; j++){ 

sum += R[i] Cj]*(i*i); 
> 

> 
return sum/Nr; 



www.manaraa.com

59 

/* FUNCTION TO COMPUTE SHORT RUN LOW GRAY-LEVEL'EMPHASIS (SRLGE) */ 

float srlge(float R[] [N] .float Nr) 

{ 
int i.j; 

float sum=0; 

for(i=l; i<G; i++){ 

for(j=l; j<N; j++){ 

sum += R[i] [j]/(i*i*j*j); 

> 

> 

return sum/Nr; 

} 

/* FUNCTION TO COMPUTE SHORT RUN HIGH GRAY-LEVEL EMPHASIS (SRHGE) */ 

float srhge(float R[] [N] .float Nr) 

int i.j; 

float sum=0; 

for(i=0; i<G; i++){ 

for(j=l; j<N; j++){ 

sum += (i*i*R[i] [j] )/(j*j) ; 

} 
} 
return sum/Nr; 

} 

/* FUNCTION TO COMPUTE LONG RUN HIGH GRAY-LEVEL EMPHASIS (LRHGE) */ 

float lrhge(float R[] [N].float Nr) 

int i.j ; 

float sum=0; 

for(i=0; i<G; i++){ 

for(j=0; j<N; j++){ 

sum += i*i*j*j*R[i] [j] ; 

> 

> 

return sum/Nr; 

> 
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/* FUNCTION TO COMPUTE LONG RUN LOW GRAY-LEVEL EMPHASIS (LRLGE) 

float lrlge(float R[] [N] .float Nr) 

int i.j; 

float sum=0; 

for(i=l; i<G; i++){ 

for(j=0; j<N; j++){ 

sum+» (j*j*R[i] Cj])/(i*i); 

> 

> 

return sum/Nr; 

> 
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